

PRODUCT CONFORMITY CERTIFICATE

This is to certify that the

MCA 10 Multi Component Analyser

Manufactured by:

Dr Födisch Umweltmesstechnik AG

Zwenkaue Straße 159 D-04420 Markranstädt Germany

has been assessed by Sira Certification Service And for the conditions stated on this certificate complies with:

MCERTS Performance Standards for Continuous Emission Monitoring Systems (CEMS), Version 4 dated July 2018 EN15267-3:2007,

& QAL 1 as defined in EN 14181: 2014

Certification Ranges:

CO NO	0 to 75 mg/m ³ 0 to 80 mg/m ³	0 to 300 mg/m ³ 0 to 200 mg/m ³	0 to 5000 mg/m ³ 0 to 400 mg/m ³	0 to 3000 mg/m ³
NO_2	0 to 50 mg/m ³	0 to 500 mg/m ³	-	
N_2O	0 to 50 mg/m ³	0 to 3000 mg/m ³	-	
SO_2	0 to 75 mg/m ³	0 to 300 mg/m ³	0 to 2500 mg/m ³	
HCl	0 to 15 mg/m ³	0 to 90 mg/m ³	0 to 5000 mg/m ³	
NH_3	0 to 10 mg/m ³	0 to 50 mg/m ³	0 to 500 mg/m ³	
CH ₄	0 to 50 mg/m ³	0 to 500 mg/m ³	-	
HF	-	0 to 20 mg/m ³	-	
CO_2	0 to 25 % ^{vol.}	0 to 50 % ^{vol.}	-	
O_2	0 to 25 % ^{vol.}	-	-	
H_2O	0 to 40 % ^{vol.}	-	-	
TOC	0 to 15 mg/m ³	0 to 30 mg/m^3		

Project No.: 70007737 / 80017390 Certificate No: Sira MC140256/06 Initial Certification: 19 September 2014 This Certificate issued: 07 September 2020

18 September 2024

Emily Alexander

Environmental Project Engineer

texander

MCERTS is operated on behalf of the Environment Agency by

Sira Certification Service

Renewal Date:

Unit 6, Hawarden Industrial Park Hawarden, Deeside, CH5 3US Tel: +44 (0)1244 670 900

The MCERTS certificate consists of this document in its entirety. For conditions of use, please consider all the information within. This certificate may only be reproduced in its entirety and without change To authenticate the validity of this certificate please visit www.csagroupuk.org/mcerts

Certificate Contents

Approved Site Application	2
Basis of Certification	
Product Certified	
Certified Performance	
Description	
General Notes	

Approved Site Application

Any potential user should ensure, in consultation with the manufacturer, that the monitoring system is suitable for the intended application. For general guidance on monitoring techniques refer to the Environment Agency Monitoring Technical Guidance Notes available at www.mcerts.net

On the basis of the assessment and the ranges required for compliance with EU Directives this instrument is considered suitable for use on waste incineration and large coal-fired combustion plant applications. This CEM has been proven suitable for its measuring task (parameter and composition of the flue gas) by use of the QAL 1 procedure specified in EN14181, for IED Chapter III and IED Chapter IV applications for the ranges specified. The lowest certified range for each determinand shall not be more than 1.5X the daily average emission limit value (ELV) for IED Chapter IV applications, and not more than 2.5X the ELV for IED Chapter III and other types of application.

Basis of Certification

This certification is based on the following Test Report(s) and on Sira's assessment and ongoing surveillance of the product and the manufacturing process:

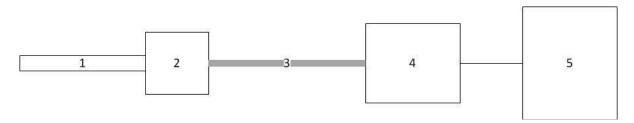
TÜV SUD Report Number 1729865 dated August 2014

TÜV SUD Report Number 1729865 dated August 2014 V1.0

TÜV SUD Report Number 1729865 dated April 2015

TÜV SUD Report Number 2600495 dated November 2017

Certificate No: This Certificate issued:



Product Certified

The MCA 10 measuring system consists of the following parts:

1. Sample Probe	2. Heated Filter	3. Heated Sample Line	4. Gas Conditioning	5. Analyser
Model: Dr. Födisch AG ETL 8211 sampling tube	Model: M&C products SP- 2000 sampling probe	Model: Winkler PTFE inner core at 200°C	Model: n.a. (since it is an internal part of the MCA 10 (item 5)	Model: Dr. Födisch AG MCA 10

Allowable variations could include:

- A different brand or model of sampling system of the same type, provided that there is evidence the alternative system works with similar types of CEM.
- Additional manifolds and heated valves used to allow more than one analyser to share a sampling system.

This certificate applies to all instruments fitted with software version V 3.61|3.61|3.61 (serial number 12002 (MCA) & 1213613 (FID) onwards).

Certified Performance

The instrument was evaluated for use under the following conditions:

Ambient Temperature Range: +5°C to +40°C

Instrument IP rating: IP54

Note: The requirement for the protection class of the enclosure is not fulfilled. The measuring system needs to be installed with an IP65 enclosure to meet the requirements of EN 15267-3. If the instrument is supplied with an enclosure, then the ambient temperature shall be monitored inside the enclosure to ensure that it stays within the above ambient temperature range. The instrument must be installed in locations protected from precipitation.

Note: If temperatures at the site are below 20°C the measuring cabinet shall be fitted with supplementary heating.

Test	Resu	lts expres	sed as %		Other results	MCERTS specification
	<0.5	<1	<2	<5		
Response time						
CO (0 to 75 mg/m ³)					182s	<200s
CO (0 to 300 mg/m ³)					190s	<200s
CO (0 to 5000 mg/m ³)					199s	<200s
NO (0 to 80 mg/m ³)					199s	<200s
NO (0 to 400 mg/m ³)					182s	<200s
NO (0 to 3000 mg/m ³)					191s	<200s
NO ₂ (0 to 50 mg/m ³)					185s	<200s
NO ₂ (0 to 500 mg/m ³)					189s	<200s
N_2O (0 to 50 mg/m ³)					176s	<200s
N ₂ O (0 to 3000 mg/m ³)					190s	<200s
SO ₂ (0 to 75 mg/m ³)					191s	<200s
SO ₂ (0 to 300 mg/m ³)					180s	<200s
SO ₂ (0 to 2500 mg/m ³)					199s	<200s
HCI (0 to 15 mg/m ³)					209s	<400s
HCI (0 to 90 mg/m ³)					260s	<400s
HCI (0 to 5000 mg/m ³)					209s	<400s
NH ₃ (0 to 10 mg/m ³)					190s	<400s
NH_3 (0 to 50 mg/m ³)					187s	<400s

Certificate No: Sir This Certificate issued: 07

Test	Results expressed as % of the certification range				Other results	MCERTS specification
	<0.5	<1	<2	<5		
NH ₃ (0 to 500 mg/m ³)					192s	<400s
CH ₄ (0 to 50 mg/m ³)					184s	<200s
CH ₄ (0 to 500 mg/m ³)					196s	<200s
TOC (0 to 15 mg/m ³)					12s	<200s
TOC (0 to 30 mg/m ³)					12s	<200s
CO ₂ (0 to 25 % ^{vol.})					189s	<200s
CO ₂ (0 to 50 % ^{vol.})					197s	<200s
O ₂ (0 to 25 % ^{vol.})					185s	<200s
H ₂ O (0 to 40 % ^{vol.})					199s	<200s
HF (0 to 20 mg/m ³)					293s	<400s
Repeatability standard deviation at zero point						
со	0.03					<2.0%
NO	0.1					<2.0%
NO ₂	0.0					<2.0%
N ₂ O	0.3					<2.0%
SO ₂	0.0					<2.0%
HCI	0.1					<2.0%
NH ₃	0.06					<2.0%
CH ₄	0.11					<2.0%
C _n H _m	0.2					<2.0%
TOC	0.17					<2.0%
CO ₂	0.02					<2.0%
O ₂	0.0					<0.2%
H ₂ O	0.0					<2.0%
HF (0 to 5mg/m ³)	0.48					<2.0%

Test	Resul	ts expres	sed as %		Other results	MCERTS specification
	<0.5	<1	<2	<5		
Repeatability standard deviation at reference point						
СО	0.13					<2.0%
NO	0.22					<2.0%
NO ₂	0.05					<2.0%
N₂O	0.09					<2.0%
HCI	0.06					<2.0%
NH ₃	0.03					<2.0%
CH ₄	0.06					<2.0%
TOC	0.02					<2.0%
CO ₂	0.01					<2.0%
O ₂	0.04					<0.2%
H₂O	0.12					<2.0%
HF (0 to 5mg/m³)	0.02					<2.0%
Lack-of-fit						
CO (0 to 75 mg/m ³)	0.30					<2.0%
CO (0 to 300 mg/m ³)			1.1			<2.0%
CO (0 to 5000 mg/m ³)		-0.79				<2.0%
NO (0 to 80 mg/m ³)	1.33					<2.0%
NO (0 to 400 mg/m ³)		-0.61				<2.0%
NO (0 to 3000 mg/m ³)	0.49					<2.0%
NO ₂ (0 to 50 mg/m ³)			1.31			<2.0%
NO ₂ (0 to 500 mg/m ³)		-0.78				<2.0%
N ₂ O (0 to 50 mg/m ³)		-0.67				<2.0%
N ₂ O (0 to 3000 mg/m ³)	0.44					<2.0%
SO ₂ (0 to 75 mg/m ³)		0.62				<2.0%
SO ₂ (0 to 300 mg/m ³)	-0.21					<2.0%
SO ₂ (0 to 2500 mg/m ³)		0.53				<2.0%
HCI (0 to 15 mg/m ³)				-2.0		<2.0%

Test	Result	s express ation ran	sed as % ge	of the	Other results	MCERTS specification
	<0.5	<1	<2	<5		
HCI (0 to 90 mg/m ³)		0.99				<2.0%
HCI (0 to 5000 mg/m ³)		0.85				<2.0%
NH ₃ (0 to 10 mg/m ³)			-1.6			<2.0%
NH ₃ (0 to 50 mg/m ³)		-0.64				<2.0%
NH ₃ (0 to 500 mg/m ³)			-1.1			<2.0%
CH ₄ (0 to 50 mg/m ³)		-0.97				<2.0%
CH ₄ (0 to 500 mg/m ³)	-0.26					<2.0%
TOC (0 to 15 mg/m ³)		0.72				<2.0%
TOC (0 to 30 mg/m ³)			1.1			<2.0%
CO ₂ (0 to 25 % ^{vol.})		0.99				<2.0%
CO ₂ (0 to 50 % ^{vol.})		0.93				<2.0%
O ₂ (0 to 25 % ^{vol.})	0.08					<0.2%
H ₂ O (0 to 40 % ^{vol.})		-0.68				<2.0%
HF (0 to 20 mg/m ³)	-1.59					<2.0%
Influence of ambient temperature zero point						
со	0.2					<5.0%
NO	-0.8					<5.0%
NO ₂	0.0					<5.0%
N₂O	-0.1					<5.0%
SO ₂		0.6				<5.0%
HCI		0.7				<5.0%
NH ₃			1.4			<5.0%
CH ₄			-1.0			<5.0%
TOC			1.2			<5.0%
CO ₂	-0.2					<5.0%
O ₂	0.1					<0.50%
H ₂ O	0.0					<5.0%
HF (0 to 5mg/m ³)			1.2			<5.0%

Test	Results expressed as % of the certification range				Other results	MCERTS specification
	<0.5	<1	<2	<5		
Influence of ambient temperature reference point						
СО			1.4			<5.0%
NO				-2.5		<5.0%
NO ₂			1.6			<5.0%
N ₂ O				-2.0		<5.0%
SO ₂				2.0		<5.0%
HCI			-1.9			<5.0%
NH ₃				2.1		<5.0%
CH ₄			-1.1			<5.0%
TOC			-1.3			<5.0%
CO ₂		-0.6				<5.0%
O ₂	-0.03					<0.50%
H ₂ O		0.8				<5.0%
HF (0 to 5mg/m ³)			1.8			<5.0%
Influence of sample gas flow for extractive CEMS						
СО			1.8			<2.0%
NO			-1.3			<2.0%
NO ₂			-1.8			<2.0%
N₂O			-1.4			<2.0%
SO ₂		-0.98				<2.0%
HCI		0.67				<2.0%
NH ₃		-0.98				<2.0%
CH ₄	-0.44					<2.0%
TOC	0.25					<2.0%
CO ₂	0.13					<2.0%
O ₂	0.14					<0.2%
H ₂ O		0.96				<2.0%
HF (0 to 5mg/m³)		-0.92				<2.0%

Test	Results expressed as % of the certification range				Other results	MCERTS specification
	<0.5	<1	<2	<5		
Influence of voltage variations 190 to 250V						
СО		0.52				<2.0%
NO		0.58				<2.0%
NO ₂		0.96				<2.0%
N₂O		0.64				<2.0%
SO ₂	0.16					<2.0%
HCI			-1.2			<2.0%
NH ₃			1.9			<2.0%
CH ₄			1.01			<2.0%
TOC		-0.79				<2.0%
CO ₂	0.06					<2.0%
O ₂	0.02					<0.2%
H₂O	0.27					<2.0%
HF (0 to 5mg/m ³)	0.33					<2.0%
Cross-sensitivity at zero with interferents: O ₂ , H ₂ O, CO, CO ₂ , CH ₄ , N ₂ O, NO, NO ₂ , NH ₃ , SO ₂ , HCl						
со	0.0					<4.0%
NO	<0.4					<4.0%
NO ₂		0.75				<4.0%
N₂O	0.0					<4.0%
SO ₂	0.0					<4.0%
HCI		-0.62				<4.0%
NH₃	0.0					<4.0%
CH ₄	0.0					<4.0%
TOC				2.5		<4.0%
CO ₂	0.0					<4.0%
O ₂	0.0					<0.40%
H₂O	0.0					<4.0%
HF (0 to 5mg/m ³)				2.92		<4.0%

Test	Resul	ts expres	sed as %		Other results	MCERTS specification
	<0.5	<1	<2	<5		-,
Cross-sensitivity at reference with interferents: O ₂ , H ₂ O, CO, CO ₂ , CH ₄ , N ₂ O, NO, NO ₂ , NH ₃ , SO ₂ , HCl						
СО		-0.52				<4.0%
NO				-2.23		<4.0%
NO ₂			1.0			<4.0%
N ₂ O			1.3			<4.0%
SO ₂			1.2			<4.0%
HCI				2.7		<4.0%
NH ₃				-2.0		<4.0%
CH ₄			1.8			<4.0%
TOC				2.7		<4.0%
CO ₂			-1.3			<4.0%
O ₂	0.20					<0.40%
H ₂ O	0.0					<4.0%
HF (0 to 5mg/m ³)				3.6		<4.0%
Effect of oxygen for TOC			1.8			<2.0%
Response factors for TOC						
Methane					1.0	0.9 to 1.2
Aliphatic hydrocarbons					1.04 to 1.1	0.9 to 1.1
Aromatic hydrocarbons					0.84 to 1.08	0.8 to 1.1
Dichloromethane					1.09	0.75 to 1.15
Aliphatic alcohols					0.90 to 1.04	0.7 to 1.0
Esters and ketones					0.94 to 0.99	0.7 to 1.0
Organic acids					0.75 to 0.77	0.5 to 1.0
Test gas mixture					13.6%	<15%

	Test	Resul		ssed as %		Other results	MCERTS specification
		<0.5	<1	<2	<5		Specification
Measu	rement uncertainty					Guidance - at leas permissible	
СО	(For an ELV of 50 mg/m ³)					6.6%	<7.5% (10%)
NO	(For an ELV of 32.7 mg/m ³)					13.7%	<15% (20%)
NO ₂	(For an ELV of 50 mg/m ³)					5.6%	<15% (20%)
N ₂ O	(For an ELV of 50 mg/m ³)					5.2%	<15% (20%)
SO ₂	(For an ELV of 50 mg/m ³)					7.7%	<30% (40%)
HCI	(For an ELV of 10 mg/m ³)					12.8%	<30% (40%)
NH ₃	(For an ELV of 5 mg/m ³)					14.2%	<30% (40%)
CH ₄	(For an ELV of 50 mg/m ³)					5.6%	<22.5% (30%)
TOC	(For an ELV of 10 mg/m³)					9.8% Note 2	<22.5% (30%)
CO ₂	(For an ELV of 25 %vol.)					2.9%	<7.5% (10%)
O ₂	(For an ELV of 25 %vol.)					1.7%	<7.5% (10%)
H ₂ O	(For an ELV of 20 %vol.)					3.8%	<22.5% (30%)
HF	(For and ELV of 10 mg/m³)					10.6%	<30% (40%)
Calibra	ition function (field)						
	CO					0.988-0.996	>0.90
	NO					0.961-0.999	>0.90
	NO ₂					0.973-0.997	>0.90
	N_2O					0.997-0.998	>0.90
	SO ₂					0.988-0.997	>0.90
	HCI					0.975-0.993	>0.90
	NH ₃					0.961-0.984	>0.90
	CH ₄					0.998	>0.90
	TOC					0.996-0.999	>0.90
	CO ₂					0.996-0.999	>0.90
	O ₂					0.963-0.986	>0.90
	H ₂ O					0.959-0.977	>0.90
	HF					0.954-0.991	>0.90

Test	Results expressed as % of the certification range				Other results	MCERTS specification
	<0.5	<1	<2	<5		•
Response time (field)						
СО					174s	<200s
NO					178s	<200s
NO ₂					199s	<200s
N ₂ O					190s	<200s
SO ₂					194s	<200s
HCI					352s	<400s
NH ₃					395s	<400s
CH₄					197s	<200s
TOC					43s	<200s
CO ₂					175s	<200s
O ₂					195s	<200s
H ₂ O					189s	<200s
HF (0 to 5 mg/m ³)					286	<400s
Lack of fit (field)						
со	0.46					<2.0%
NO			-1.44			<2.0%
NO ₂			-1.83			<2.0%
N ₂ O		-0.98				<2.0%
SO ₂			-1.4			<2.0%
HCI			-1.91			<2.0%
NH ₃			-1.92			<2.0%
CH ₄		0.69				<2.0%
TOC		0.81				<2.0%
CO ₂			-1.23			<2.0%
O ₂	-0.09					<0.2%
H₂O		0.58				<2.0%
HF (0 to 5 mg/m ³)				2.0		<2.0%

Test	Results expressed as % of the certification range				Other results	MCERTS specification
	<0.5	<1	<2	<5		
Maintenance interval					6 months Note 1	>8 days
Zero and Span drift requirement	neasu HCI, H for O ₂ chea Shoul during applica TOC	MS has a ecessary urement of IF, NH ₃ , (and IF) which is a constant of the material of the material of the material of the status is set the set of the s	Clause 6.13 & 10.13 Manufacturer shall provide a description of the technique to determine and compensate for zero and span drift.			
Change in zero point over maintenance interval				lote 2		
СО		0.62				<3.0%
NO			1.6			<3.0%
NO ₂	0.06					<3.0%
N ₂ O	-0.19					<3.0%
SO ₂	0.37					<3.0%
HCI			1.7			<3.0%
NH ₃	0.44					<3.0%
CH ₄				-2.3		<3.0%
TOC				-2.8		<3.0%
CO ₂	-0.25					<3.0%
O ₂	0.02					<0.2%
H₂O	-0.06					<3.0%
HF (0 to 5 mg/m ³)				2.4		<3.0%
HF (0 to 20 mg/m ³)		0.59				<3.0%

Test	Results expressed as % of the certification range				Other results	MCERTS specification
	<0.5	<1	<2	<5		
Change in reference point over maintenance interval						
СО				-2.1		<3.0%
NO			-1.6			<3.0%
NO ₂				-2.9		<3.0%
N ₂ O				-3.0		<3.0%
SO ₂				2.4		<3.0%
HCI				2.9		<3.0%
NH ₃				3.0		<3.0%
CH ₄				-3.0		<3.0%
тос				-2.6		<3.0%
CO ₂		0.75				<3.0%
O ₂	0.06					<0.2%
H ₂ O				-2.3		<3.0%
HF			1.2			<3.0%
Availability						
Oxygen					>98.6%	>98%
All other parameter					95.4%	>95%
Reproducibility						
СО		0.9				<3.3%
NO			1.6			<3.3%
NO ₂			1.2			<3.3%
N ₂ O	0.4					<3.3%
SO ₂				2.4		<3.3%
HCI				2.8		<3.3%
NH ₃				2.3		<3.3%
CH ₄			1.3			<3.3%
TOC			1.7			<3.3%
CO ₂	0.20					<3.3%
O ₂	0.15					<0.20%

Test		ts expres certificat			Other results	MCERTS specification
	<0.5	<1	<2	<5		
H ₂ O	0.30					<3.3%
HF				2.4		<3.3%

Note 1: The measuring device shall operate at intervals of 12 hours for the automatic zero adjustment. TOC automatically adjusts for zero and span at an interval of 24 hours.

Note 2: For applications with NO_2 , HCl, HF or NH_3 , the automatic zero point adjustment is carried out by local zero gas at the injector block. For control and adjustment of the reference points for NO_2 , HCl, HF and NH_3 , the test gas is performed locally on the injector block. The manufacturer's specifications for the instrument air supply must be observed.

Certificate No: Si This Certificate issued: 07

Description

The multi-component MCA 10 system is an absorption-spectrometric multi-gas sensor for flue gas measurement and can measure up to 12 components.

The MCA 10 analyser extracts sample gas from the stack via the heated probe and heated line to the analyser which is a heated IR analyser. All components of the MCA 10 system are heated to a temperature above the acid dew point to allow monitoring on various applications.

The MCA 10 analyser uses gas filter correlation and a bi-frequency measuring principle depending on the components being measured. For the oxygen measurement a zirconia sensor is used.

General Notes

- 1. This certificate is based upon the equipment tested. The Manufacturer is responsible for ensuring that on-going production complies with the standard(s) and performance criteria defined in this Certificate. The Manufacturer is required to maintain an approved quality management system controlling the manufacture of the certified product. Both the product and the quality management system shall be subject to regular surveillance according to 'Regulations Applicable to the Holders of Sira Certificates'.
- 2. The design of the product certified is held and maintained by TUV Rheinland for certificate No. Sira MC140256/03
- 3. If certified product is found not to comply, Sira Certification Service should be notified immediately at the address shown on this certificate.
- 3. The Certification Marks that can be applied to the product or used in publicity material are defined in 'Regulations Applicable to the Holders of Sira Certificates'.
- 4. This document remains the property of Sira and shall be returned when requested by the company.

Certificate No: This Certificate issued: